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Preface

This report is our attempt to determine the feasibility
of an earth-moon mission using a recursive navigation technique
where only individual earth-moon fixes are used for navigational
measurements. We believe that the report is organized in such a
manner as to permit easy assimulation of the theories and techniques
by the reader with some experience in lunar navigation studies.
However, we do hope that the uninitiated can glean some informative
meaning of the results and conclusions recorded. Since the
introduction is the key to our pattern of development and sets forth
the assumptions upon which this study is based, the reader should
digest it before attempting the body of the report.

This study is by no means independent in the true sense of the
word. As is obvious from the bibliography, it is based on the
findings of several experts in the fiesld of astronautical guidance.
In particular, we would like to single out the work of Dr. Richard
H. Battin of the M.I.T. Instrumentation Laboratory. Dr. Battin's
well-formulated recursive navigation theory and matrix techniques
are used exclusively in this study. It is safe to say that without
them this study would have never been attempted. Also, we must
acknowledge our faculty thesis advisor, Capt. Charles J. Januska,
for suggesting this study and giving us the benefit of his insight
into Dr. Battin's theory. Capt Januska's constant advice and

encouragement made it possible for us to complete this study. Last,

ii
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but by no means least, we are grateful for the I.E.M. 7090

digital computer programming assistance of Mr. William R. Poole,

a mathematician in the A.S.D. Digital Computation Division (WPAFB,
Ohio). Without Mr. Poole's capable programming of oux navigation
equations and his interest and patience in making the many changes
suggested as the study progressed, we could have never completed
this study on time.

This investigation has been of great benefit to us in two
distinct ways. First, we have become familiax with space navigation
theories and gained an insight into the statistical theory upon
which they are based. Secondly, we have gained invaluable experience

in digital programming techniques.

Paul J. Ellmer

Donald R. Hefty

iii




GOC/EE/64-9

Contents
PrefaCe v v o v o o o o o o o o 4 o o o o o o 4 s o .
List Of FIQUres . .« ¢« « ¢ o « o o & o o o o o o« a o

List of Tables - * . » - - - - o o - - - . . L . @* -

Abstract . . . . - . . . . . . . - - . . . 3 . . . . *

IO

II.

III.

Iv.

V.

VI.

Introduction . .« « ¢ 4 4t 4 v e e e o e o o o

Statement and Analysis of the Problea . . . .

The Problem . . . . ¢ o« 4 5 ¢ o« « o o = &
Pattern of Development . . « « « . + « « &
Assumptions . . . . .« ¢ ¢ ¢ 4 e e o . .

Notational Conventions . . . « « ¢ ¢ « « « .
A Linearized Navigation Theory . . . . . . . .
A Single Observation Fix . . . . . . . . . .
Matrix Solution of the Trajectory Equations
The State Transition Matrix . . . « « « . .

An Estimate of Position and Velocity Deviation

Statistical Parameters and Definitions . ., .
Improving the Estimate . . . . . . . . « . .

Results
Effect of Navigational Measurements . . . .
Effect of Inclimation . . . . . . . . . . . .
Effect of Fix Spacing . . « ¢ + « « & « o « &
Effect of Sextant EXrrors . . . . « + « + o &
Conmparison of Fix 1 and Fix 2 . . . . . . . .

Conclusions . ¢« v o « o o « ¢ o s o o 2 e o o

Recommendations . +« « o « o o ¢ o o 2 o o o o

Bibliography . . . . ¢ ¢ ¢ ¢« v « v ¢ ¢ ¢« o o 4e o o .

iv

Page

ii

S oA W

O

11
13

16

16
18

20
21
24
26
29
30
36
37

38




aasssys

i e i e e S S S S S e L e L C TN N S - o
y -~ -~ “ -

0GC/XE /64-9

Coptents
Appendix A: Iunar Reference Trejoctory « ¢ o ¢ ¢ ¢ ¢ ¢ ¢ o o o o
Appendix B: NMavigational Measurements . ¢ . o ¢ ¢ 2 ¢ ¢ ¢ o o« o
Appendix C: The Fundawental Perturbation Matrieces . e« o v v o o
Appendix Dy Assumsd System BXTOrS ¢« ¢ o o o o ¢ 0 0 2 06 6 ¢ ¢ o

Yita
Donald R HELEY ¢ ¢ ¢« o ¢ o ¢ ¢ ¢ 2 0 ¢ ¢ 6 06 06 060 ¢ o
Paul Je ElIMOBI' . ¢ ¢ o ¢ o o ¢ ¢ 6 6 6 06 6 06 5 6 0 ¢ o

40

49

56

58
59

-,



GGC/EE/64-9

Figure

List of Figures

Page
The Effect of Navigational Measurements on
Uncertainty in Position and Velocity . . . . . . . . 22
The Effect of the Inclination of the Lunar and
Spacecraft Planes on Uncertainty in Position
and Velocity . . o ¢ ¢ ¢ ¢« ¢ v o o o o o o o o o o 25
The Effect of Fix Spacing on the Uncertainty in
Position and Velocity . « « ¢« « & ¢ 4 o o« ¢« o o« o o @ 27
The Effect of Sextant Error on the Umcertainty in
Position and Velocity . . . . . . s s e s e s e e e 30
Coplanar Comparison of Fix 1 and 2 . . . . . . . . . 32
Non-Coplanar Comparison of Fix Land 2 . . « « . . . 33
Simplified Lunar Trajectory . . . « « ¢ ¢ ¢ o & o+ & 44
Space Coordinate System . . . « ¢ o ¢ « ¢ o o o & & 50

vi




GGC/BE/64-9

List of Tables

Tablz Page
I The Bffect of Navigational Measurements on
the Uncertainty in Position and Velocity . . . . 23
11 The Effect of the Inclination of the Lunar and
Spacecraft Planes on Uncertainty in Position
and Velocity . . . . ¢ ¢ & ¢ 4o ¢ 4 o v 4 o o o 23
I11 The Effect of Fix Spacing on the Uncertainty
in Position and Velocity . . . . . . . . . « . . 28
Iv The Effect of Sextant Exxor on the Uncertainty
in Position and Velocity . . . . . . . . . . . . 28
\' Coplanar Comparison of Fix 1 and Fix 2 . . . . . 34
VI Non-Coplanar Comparison of Fix 1 and 2 . . . . . 34
A-1 ‘frajectory Insertion Parameters . . . . . . . . 44
C-I Reference Trajectory Parameters . . . . . . . . 51
D-1I Assumed R.M.S. Injection Exrors . . . . . . . 56

vii




GGC/ER/64-9

Abstract

The purpose of this study is to determine the feasibility
of using a recursive ravigation theory in which individual earth-
moon angular measurements (fixes) are processed as they are made
and combined with the current best estimate of position and velocity
to produce an improved estimate. The recursive navigation trechniques
of Dr. Battin of the M.I.T. Instrumentation Laboratory are used.
Estimates made with an eazth-moon fix interval of 5 minutes or
less are compared to estimates made with conventional earth-star,
moon-staxr fixes of 15 minutes. Fesults show the earth-moon fix

to be a feasible technique.

viii
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UNCERTAINITY IN THE ESTIMATE OF POSITION AND VELOCITY
ALQNG A LUNAR TRAJECTORY USING INDIVIDUAL
EARTE-MCON ANGULAR MEASUREMENIS IN A

RECURSIVE NAVIGATION THEORY

I. Introduction

The design and development of self-contained lunar space
navigation techniques are of paramount interest to many of the
space scientists and astronautical engineers of today. The most
critical factors in the design of such techniques are the accuracy
and reliability of the spacecraft equipment needed to implement
them. Since the navigation system is one of the most complex of
the spacecraft subsystems, special attention has been given to
reliability. Generally, this reliability is enhanced by the use
of simple equipment concepts. Therefcre, efforts to design new
techniques, as well as modify present techniques, utilizing simpler
equipment concepts is a continuous process. This study is concerned
with the simplification of a proven concept of space navigation as
applied to an earth-moon mission and is justified on the basis that
a simplification of equipment can be obtained without sacrifice to

accuracy.

Statement and Anaiysis of the Problem

A unique injection (launch)velocity imparted to an earth orbiting

1
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vehicle at a specific point in space will result in an unigue
preplanned trajectory. As @ —wasult of inject.on velocity errors,
however, the spacecraft will not follow this preplanned trajectory.
Thersfore, in order to determine the actual trajectory, navigational
information must be obtained during the Clight. A source of this
pavigational information in space is the observation of the angle
between selected celeatisl bodies as seen from the spacecraft., It
can be readily appreciated that an angular measurament between two
celastial bodies is unique to only one pcint in space for any given
time. Each angular measurement (navigational measurement, naviga-
tional fix, or aimply, fix) need not determine the position and
velocity of the spacecraft; the informatior from a series of
individual fixes taken over a period of tims may be combined as a
recursive operation in which individual measuroments are processed
as they are made and combined with the current beat estimate to
produce an improved estimate. Theorstically, six such fixes would
auffics 4o determine the position and velocity of the spacecraft.
However, due to the inherent inaccuracies of the onboard angular
measurement devices (an optical sextant in this study), statistical
methods based on the known statistical behavior of these dsvices
are necessary %o ascertain the uncertainty (r.u.s. error) in the
position and velocity eatimate obtained.

The reacursive navigation thcory of Dr. Richard H. Battir of

the M.I1.T. Ianstrumentation laboratory is used in this study
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(Ref 3:303-340). This theory involves the formulation of an
optimum linear estimate as a recursive operation in which the

best estimate of position and velocity obtained by the best choice
of navigational fix is combined with newly acquired information to
produce an improved estimate. The derivation of the optimum linear
cparation is based on the application of a simple least-squares
estimacion techniquee.

The Problem. This study is concerned with the detsrmination
of the uncertainties ir the estimates of position and velocity
along a lunar trajectory using {ndividual earth-moon sngular
measurements in a recuruive navigation theory. The _unar tvajectory
in this study is definel as an elliptical path from a parking
orbit about the earth Lo a point near the moon's sphere of influence
{see Appendix A).

In previous studies made with the recursive navigatiocn theory
outlined, pavigationsl measurements were made eiong the spacecraft's
tra jectory using various star-planet combinatiors. At each pre-
planned measurement time, the particular atar and planet (in a lunar
tra jectory atudy, sseveral prominent stars and the planets, sarth
and moons are usually considered) contributing the least uncertainty
in the estimate of position and velocity is selected. The analysis
of the studies using this method, referred % as Fix 2 in this study,
ahows that acceptable accuracy was obtained (Ref 2:35-36).

In this study the fix at each preplanned point in time 11long

the spacecraft's trajectory was restricted to the measurement of
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the angle between the earth and moon only. This method is referred
to as Fix 1 in this study. At first glance, this restriction seems
to be unworthy of investigation because, given the same fix times
for Fix 1 and Fix 2, it is obvious that Fix 2 is superior to Fix 1.
However ; considering smaller time intervals between the measure-
ments of Fix 1, the situation takes on a new prospective. In Dr.
Battin's studies, Fix 2 (Ref 2:28) was restricted to time intervals of
no less than 15 minutes because of the time required to reposition
the optical sextant to the next star-planet fix. In Fix 1, since
the sextant is measuring only the earth-moon angle, no complex
positioning arrangement need be implemented. Since the earth and
moon is continuously monitored, fixes can be taken at much smaller
time intervals. This allows more measurements toc be made over a
given span of time and increases the accuracy of the estimate of
position and velocity at the end of that span.

Time -intervals as small as 30 seconds were considered practical
for Fix 1, since the only time restriction of any consequence was
considered the processing time of the spacecraft's onboard digital
computer. Therefore, in essence, this study is an investigation
of using Fix 1 along a lunar trajectory at time intervals less
than 15 minutes in a recursive navigation theory to determine whether
or not it will give results comparable to Fix 2 at a time interval
of 15 minutes.

Pattern of Development. The following sections attempt to outline

the recursive navigation theory and show how it is applied to Fix 1
and Fix 2 to obtain the uncertainties in the estimate of position

4
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andi velocity along a lunar trajectory.

Section II contains a brief outline of the nature of the
single observation fix and the linearized trajectory equations
which are used in the racursive navigation theory. This section
is supplemented by Appendixes A, B, and C. Appendix A describes
the basic considerations in planning a lunar trajectory. The
navigational £ix equations are presented in Appendix B, while
Appendix C presents the parameters of the lunar trajectory used
in this study and states the equations which represent the
deviations in position and velccity along the reference trajectory.

Section III gives some basic statistical considerations
for the navigation theory and outlines the equations which define
the uncertainties in the estimate of position and velocity at
any point in tims along the spacecraft's trajectory. Appendix
D supplements Section III by presenting the asswumed initial
errors at injection of the spacecraft into its lunar trajectory
and the assumed error of the optical sextant considered.

The results of Section IV graphically portray the comparison
betwesn Fix 1 and Fix 2 for different time intervals along the
trajectory. In addition to this comparison, other factors observed
which relate to the uncertainty in the position and velocity
estimste using . 'z 1 are presented. These factors ere:

l. The effect of the inclinetion between the plane
of the spacecraft's reference (preplanned) trajsctory and the

orbital plane of the moon.
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2. The effect of the assumed r.m.s. error of the
onboard optical sextant.

3. The effect of including in Fix 1 the apparcnt angular
diameter measurements of the earth and moon.

The conclusions of Section V discuss the results obteined using

Fix 1 and their meaning in terms of the compatability with uncertain-
ties in position and velocity using Fix 2. Possible extensions to
this study are outlined in the recommendations of Section VI.

Assumptions. The solution of this problem was based on the

following assumptions:

1. The spacecraft's motion is adequately described in a single
inverse squared gravity field (earth). This assumption is discussed
in more detail in Appendix A.

2. The location of stars was arbitrarily selected along
the six axes of the space coordinate system (Appendix C} and at
an infinite distance. This assumption is valid because the
direction o the stars, corrected for aberration and parallax for
the period of a lunar mission, are, for all practical purposes,
unvarying regardless of vehicle position. Also, abcard the space-
craft the stars are unobscured and appear as point sources of light.
3. The features of the moon can be readily observed
from a spacecraft and the terrain features on earth will also be
ubservable from the spacecraft despite some degradation due to
atmospheric effects. Therefore, the use of an onboard optical
sextant suggests itself as one Dossiblz techaique for making angular

measurements.
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4. The only equipment inaccuracies considered are in
the optical sextant of the spacecraft's navigational system. In
addition, the optical sextant is assumed to have a known random
and independent error. Section III and Appendix D outline this
assumption in more detail.

5. The deviations from the reference trajectory are
small enough to allow the use of linearized techniques. This
assumption is justified on the premise that only small deviations
can be tolerated on this type of mission without making corrective
techniques impractical because of the limited fuel capacity of
the vehicle.

6. Initial position and velocity errors can be
predicted within a certain tolerance. The prediction used in
this study is outlined in Appendix D.

7. Only the outbound portion of a circumlunar mission
between an earth parking orbit and the moon's sphere of influence
was considered. This assumption is discussed further in Appendix
A.

2. Finally, the onboard computer is capable of storing
all pertinent constants and computing the navigation and guidance

problem in the time allowed.

Notational Conventions

The notational conventions used in this study are those used

by Dr. Battin (Ref 2:2). Most of the equations in this report
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are three-and six-dimensiocnal vector equations and are denoted
by a capital letter such as A, K, T, etc. A column matrix of

any dimension is represented by a lower case underscored letter
such as a. A vector transpose is denoted 3? and the scalar or
dot product of two vectors a and b is written 3?2. An overscorce

denotes the average value, therefore,'g’is the average value

of the vector a.




II. A Linearized Navigational Theory

A single argular measurement made at a krnown instant of time
is sufficient to fix the position of the spacecraft in one
coordinate. Succeeding measurements combined with updated position
information from preceding measurements su.fice to accurately determine
the spacecraft's position and velocity (Ref 2:3-4). The
practicality of this method is based on the fact that vehicle
dynamics are governed by known laws and the assumption that
deviations from a preplanned trajectory are kept small enough to
permit linearization of the problem. A discussion of the nature
of thie single angle fix and of the linearized trajectory equations

which constitute this method is outlined in this section.

A Single Obhservation Tix

As stated, a single measurement serves to fix the position of
the spacecraft in one coordinate, if a linearized theory ic
assumed (Ref 8:12). It is shown in Appendix B that the deviation
in position, 8.£n! of the spacecraft from the reference path is

related to the deviation in angular measureuwent, SAn, by
T
$ag=nndx, (1)

if the observation is made at a known instant of time, t,. The
vector h, is a function of the geometry of the celestial objects
measured and the type of measurement.

9
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Because of the inherent dynamic coupling of positiocn and
velocity, the result at a later time, tp+3, of a measurement
made at t, does not lend itself to a simple geometric interpretation.
Howevexr, to provide a geometric description it is convenient %o

define the state of the vehicle dymamice at t,, by the six dimensicnal

deviation vector

Sx  [5:

~=n (2)

Sy
where Sgn is the deviat®on in velocity. The relationship

between S:’Sn*l and SZ‘-n is simply

o x

Xn+1 T Tn+1,n35n (3)

where Tp,q n is refexred to as the "state transition matrix" and
is defined later by Eq (19).
BEquation (1) may be written in terms of Sin as

T. T
6 Ap = hy'K Sin (4)
where the rectangular K matrix is defined by

K = E (5)

LO 68,

By combining Egqs. (3) and (4), we have

T.T -1
SAn =hy K Thelm & Xn+1 (6)

Six observations made at different times would provide a set
of six equations of the form of Eq. (6). If no two of the
component directions wer-e parallel and the measuring device used

10
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to obtain § A, was perfect, then the deviation vector could be

accurately computed,

Matrix Solution of the Tra! ‘tory Equations

A certain collection of so-called "perturbation"” matrices are

basic to the solutian of the linearized trajectory problem. The

following shows how these matrices may be obtained as solutiens of

the linearized differential equations,
Let rg(t) and v,(t) dencte the position and velocity of the
spacecraft in an earth centered inertial coordinate system, and

let g(rg,t) denote the gravitational scceleration, Then

drs | 74 » 4y glrg,t)
dt T

are the basic frece fall equations of motion.
Let r (t) and v,(t) rerresent the position and velocity
associated with the reference trajectory at time t and define
(¥) = rg(8) - r(t) ,  w(v) = wg(t) - ¥ (1)
Then, the deviations 5 r and § Vv may be approximately related by

tiie linearized cifferentisl equations

of 31§y, A §v o, v)fr
at. at

where G(r.,t) is a 3 dimensional matrix whose elements are the
partial derivatives of th#s components of E_{Eo,t\ with respect to

the components of r, (Ref 15:62),

(8)

(9)
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A fundamental set of solutions of Eqs (9) nas been developed
(Ref 3:210). Let t and tA be the time of launch and arrival,

respectively. Then define the 3 dimensional matrices R{(t), R(t)¥*,

V(t) and V(t)* as the solutions of the matrix differential

equations
dR(t) =V(t) dR(t)* = V(t)*
dt dt (10)
dv(t) = GR(t) dv(t)* = GR(t)*
dt dt
which satisfy the initial conditions
R(t; ) =0 R(¢L, V¥ = 0
L
A (11)
= { *_
V(tL) I v tA\ =1
If we now write
0Iy =R ¢ + Ry* c* (12)
§9, =V g + Ry*c* (13)

where 8_1_'_!1 = (Sg_(tn), R, = R(t,), etc., and ¢ and c* are arbitrary
constant vectors, it follows that these equations satisfy the
linearized differential equations (9). They also contain precisely
the required number of unspecified constants to meet any valid set
of initial or boundary conditious.

The elements of the R, and V, matrices represent deviations
in position and velocity along the reference trajectory resulting

from velocity deviations at launch. A similar meaning is given

12
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to the R,* and V,* matrices as a result of deviations in velocity
at the arrival point. A complete description of these perturbation
matric2s can be found in the literature (Ref 15:58-66).

There are a number of techniques for computing these
perturbation matrices. Since this study deals with an elliptical
trajectory, a simple and straight forward matrix technique
formulated by Dr. Battin (Ref. 1:761-773) was used. This
technique, which is modified for the special case of a spacecraft
trajectory coplanar to the orbit of the moon, is outlined ip

Appendix C.

The State Transition Matrix

The state transition matrix was defined by Eq (3) and can be
conputed from a knowledge of the Eqs (12) and (13). First, ¢
and c* must be obtained as solutions of Eqs (12) and (13). After

some simplification

-1
e = -1 h ey Sy -8 vy (14)
e = -Ly*-l(cy 4 xn - 4 vp) (15)
where
Ch = Vn Rn-l
Cp* = Vp* Ry 1 (16)

*
In =Vp - Cy Ry
I‘n§ Vn* - Cn Rn*

Thus, with ¢ and c* determined, the position and velocity deviations

at any time t,; are given by Egs (12) and (13).

13
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In terms of the six dimensional deviation vector defined
by Eq (2),
5 Bp Rp* <

= (17)

—-—

x
=n

A similar relationship can be written for J\§n+1' Considering

Eq (3) we have
; Rp+1 R;+1 Rp Rn )‘

Zn+1l ~ -
Va+1  Vi+l Va Vn

X (18)

Using Eqs (16), we have

.1 -1 <17
_ Rn+1 Rn+1*.l (Cn Ln) 0 -1 Cn*
Tst,n = . Y| |9
Va+l Vol ° (Ca Ln*) -1¢,
Further simplification gives
R »* A_# -1 * 1w 0
n+l Rn+l (Rn = An Vn) (Ap*Vh - Rp) A, (20)
Tn+1,n = * -1 -1
Vn+l Vn+1* (Rp* - ApVy ) (Anvn* - Ry*) Aq
(Ref 3:305)
where
-1 -1
Ap = C, = = RpVy

3 21)
- 1 - . (
A ® = C #7" = R #, _*

The form of Eq (Z2)) was motivated by the values of R(t;) and
R¥(t,). From Egs (16) it follows that these two singular matrices
would make the computation of C(tL) and C(ty)* impossible. However,

this difficulty is avoided by the use of Eq (20).

14
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An interesting feature of the state transition matrix,

which allows the checking of its computation, is that it is

an example of a symplectic matrix (Ref 3:306)

matrix, A, is said to be symplectic if
T
AJA=1J

where

[o 11

-1 o)

()
"

. An even-dimensional

(22)

(23)

In addition, the absolute value of the determinate of a symplectic

matrix is equal to unity. These features were used to check the

computation of the state transition matrices computed in this

study.

15
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III. An Estimate of Position and Velocity Deviation

The previnus section described a simple position and v .ocity
determining technique which made no provision for the inherent
errors common to all navigational measuring instruments. Usually
it is necessary to discuss navigational accuracy on a probabilistic
rather than absolute basis because of the inexact knowledge of
the error coefficients of the various measuring devices in the
systen. Therefore, a statistical evaluation of the accuracy of
the navigation process must be made. In this study only the
optical measuring device was considered as a source of the
uncertainty. Accurate estimates of position and veloecity along
a space trajectory can be obtained by applying the method of least
squares to the system's errors. A linear least squares estimation
procedure, where all statistical calculations are based on first

and second order averages, is outlined in this section (Ref 2:4-6).

St::.z.ical Parameters and Definitions

Berore discussion of the statistical parameters, it is

neressary to define some ternms

S A,

the true deviation in the angle A, from its reference
value at t,

5 An = the observed or measured deviation
Fal
5 An = the estimated deviation
4 " . .
An = dA extrapolated from a previcus estimate by the
state transition matrix (T)
a, = the error in the measurement of ‘SAn

16
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b

b, the error in position estimate

gn = the error in velocity estimate
Similar definitions can be applied to‘8§n, Eq (2).

From these definitions we have,
SA = 0a_+a (24)

In the subsequent analysis, a, will be assumed to be a random

(3, = o) and independent (3;:;5;'= o) variable. The application

of the Central Limit Theorem indicates that the probability
distribution function for the system errxor will be normally distributed
(Ref 9:315). Furthermore, the standard deviation (d n) for the

system error will be the root-sum-square combination of the

standard deviation for the individual error coefficients. Therefore,

in this study the variance of the optical measuring device can

be computed by

On = a?< (25)

In the next sub-section, an estimation procedure is discussed
for determining an optimum linear estimate of § Xp,» denoted
by Sg%. An integral part of this estimation technique is the
correlation matrix of the measurement errors in the estimate.

If we write

A
Xn Xa v &, (26)
then
by
en < (27)
In |

17
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The correlation matrix of the measurement errors is thus defined by

_ ____T., T ——e _ 1 2
En = e e = b bn b gr = [En En (28)
3 "
E“En Engn En “n

1 4
where the traces of E, and E, are the mean-squared errors in
the estimate of position and vziocity, respectively or as it is
used in this report, the uncertainties in position and velocity.

Again from the definitions we have

A~ ~
x = T

§ % 29
- n,n-l 1“l'l'--l ( )

In like manner, the extrapolated correlation matrix can be

shown to be

' =g T

Ea n,n-1 Ep-1 Ta yn-1l

(29A)

Improving the Estinmate

The development of an optimum linear estimate as a recursive
operation in which the current best estimate is combined with
newly acquired information to produce a better estimate was
presented by R.E. Kalman (Ref 12) and completely formulated by
R. H. Battin (Ref 2:16-18). This development assumes that an
initial E,_1 (Appendix D) is known and that a single navigational
measurement of the type described in Appendix B is made at time
t,. A linear estimate for the deviation vector 5 §n is expressible
as

Al

S5 = §% + w ( SK, -4 (30)

where w, is a weighting factor which #il1ll be chosen so as to

minimize the mean-square erxror in the estimate. It can be

18
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shown that the correlation matrix, E defined by Eq (28) muy be
expressed as a function of w as

—

E (¥) = (I - wpbnTKT) Ep(T - Bngwe ™) + wow Ta ? (31)

In order to determine the optimum ¥,, the technique of

variation calculus can be shown to yield

§ entlag) = 2 ['S%TKTEJ (I - Bap®) + MowoTay? } (32)

Ir § enz(.!n) is to vanish for all variations g ¥n, then it must

foliow that

c ¥y = Er; Kb, (33)

where the scalar coefficient ¢, is computed from

ae—

ey = b, TKTR, Eny ¢+ a2 (34)
Having obtained the optimm w,, E, may be written as
By =B -enH(En Ki) (5, Kn,)T (35)

Bguations (30) and (35) then serve as recursive relations to be
used in obtaining improved estinates of position and velocity
deviations at each of the measurement times selected along the

spacecraft’s trajectory.
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IV, Results

3

The aflfact o position snd velocity uncertainties by use of

’

varicus navigation fix aschamss, altering the inclination angle
between the rafsrencs trajsstary planes and ths lunsr plans,

for thes warisnce in ths errors of the

]

considering diffsersnt vslus
optical moasuring devics, and using differsnt time intsrvals between
oach navigation fix is outlined in this chaptsr. Finally, a compariscn
between Fiz 1, whieh usss only sarth-moon angulsr measursments for
input intc the recursivs nsvigstion squations and Fix 2, vhich considers
and selscte the best of sarth-star, moon-stsr, #1d earth-moon angular
measursments is pressnted in the last secticn of thie chapter.

Since only the outgoing eliipticsl portion of the lupsr trajectiory
is considered in this study, the finsl position and velocity
uncertainties as listes gctually repressnt ths initisl unsertainties
for the selsnogsniris hypsrbolis porticn of the luner trajectory. 4
value of ons statuts mile (Ref 5:13) was selacted &s the desired
maximem uncertainty iz finsgl position and 0.025 mph was chosen ag the
dezired maximes unsseriainty in finel wvslocity., This dasired finsl
maximum veloslity sorrespondes %o approximately 0.001% of the velooity
of the velicle at that point (Fef 6:31; Ref 16:755). It was also
degired %o maintaln the msxims position and velooity uncertainties
during the flight within an ordsr of magnitude of those Jfound by

Battin (Pef 2:35-36). To help indicate the genaral shapes of the
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curves, the tables in this chapter also include values at the midcourse
point, which for shis study is considered that point corresponding to

25 hours of flight.

Efect of Navigation Measurements

The effect of using various navigation fix schewes on the
uncertainties in position and velocity is presented in Fig. 1 and
Table I. Fix 1 uses only earth-moon angular measurements for ipput
into tae recursive navigation equations; Fix 2 considers and selects
the best of the earth-star, moon-star, and earth-moun angular
measurements; Fix 3 considers and selects the best of the apparent
diameter msasurements of the earth and moon, and the earth-moun
angu.ar measurements; and Fix 4 considers and sclects the bes: fram
all of the above measurements. For each fix, ‘the beat measurensut
is considersd that measurement which results in the amallest value
for uncertainty in position. The measurements are further discussed
in Appendix B. The inclination angls between the lupar plane and
thie refeirence trajectory plane is 900 (Appendix A) and the time
interval between each navigation fix is held constant <% 30 minutes.
As ipdicated in Fig. 1, the position and velocity uncertainty curves
each use different values for the variance in the errors of the
optical measuring device.

The position uncertainty curve for Fix 3 exhibits unexpected
results which have not been explained, although the pertinent equations
and computer program have been checkea for possible errora.
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Table

I

The Effect of Navigational Measurements on Uncertainty in Positiocn
and Velocity

Note: This data is taken from the same conputer results used to
plot Fig. 1.

Nav. Position Uncertainty (mi.) Velocity Uncertainty (mph)

Fix Maximum Mid. | Final Maximum Mid. | Final
1 13.667 (2.5)2 |2.841} .951 9.829 (1.)* | .1411] .0189
2 2.092 (14.)% |1.930| .787 5.161 (.5)* | .0959 | .0152
3 9.321 (9.0)% |3.222| .972 b b b
4 2.081 (16.)2 |1.930| .787 b b b

a Time in hours after time of launch when maxinum occured.

b No data taken.

Table 11X

The Effect of the Incliration of the Lunar and Spacecraft Planes on
the Uncertainty in Position and Velocity

Note: This data is taken from the same :omputer results used to
plot Fig. 2.

Inclin. Pcsition Uncertainty (mi) Velocity Uacertainty (mph)

Angle -

{degrees) Maximum Mid. Final Maxinmum Mid. |[Final

0 56.610 (14.8)2113.946 [2.332|| 15.349 (.25)2|.7609 |.0597

30 15.264 (1.5)® {10.677 {4.075| 17.057 (.25)2|.5137 | .0539
60 39.166 (4.8)2 | 3.450 |1.306| 15.830 (.25)%|.1809 | .0243
90 5.693 (4.3)2 | 1.916 |0.695] 16.126 (.25)2|.1008 | .0135

a See Table I.
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As expected Fix 1 has the largest uncertainty in position (13.667
miles) since it uses only earth-moon angular measurements, but
the curve for Fix 3 which also considers apparent earth-moon
diameter measuzements crosses and remains above the former curve
after 7.5 hours of flight. Because of these results, the earth
and moon diameter measurements are not considered in the remaining
sections of this chapter.

All final position uncertainty values are below one mile. The

velocity uncertainty curve for Fix 1 remains above the curve for

Fix 2 for all flight times and the Fix 1 curve reaches a maximum
of 9..829 mph, compared to a maximum of 5.160 mph for Fix 2. Both

final velocity uncertainty values fall below 0.025 mph.

Bffect of Inclination

The effect of the use of coplanar and non-coplanar trajectories
on position and velocity uncertainties using Fix 1 is shown in Fig.
2 and Table II. Inclination angles of 0°, 30°, 60°, ard 90° are
considered. The time spacing between each navigation fix is held
constant at 15 minutes and a constant variance in the errors of the
measuring device is assumed. Curves for Fix 2 and a non-coplanar
refexence trajectory are also shown for comparison purposes.

The coplanar trajectory resulted in the highest maximum value
for the uncertainty in position (56.610 miles) but the curve drops
below the curve corresponding to am inclination angle of 30° after
30.25 hours of flight. For an inclinatior angle of 90°, the position
uncertainty curve reaches a maximum value of only 5.693 miles and it
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is the only curve to drop below one mile. The maximum velocity
uncertainties compare in order of magnitude for all values of
inclination angles considered but the curve for 90° drops much
faster than the others. The curve for all inclination angle of
30° crosses above the curve for 60° after 14.50 hours of flight.
Only the final velocity uncertainties for inclination angles of

60° and 90° are below 0.025 mph.

Effect of Fix Spacing

The effect on position and velocity uncertainties by using
different time spacings between each navigation fix is shown in
Fig. 3 and Table III. These values are for Fix 1 using an inclination
angle of 90° aad assuming a constant variance in the errors of the
optical measuring device. Curves and data are shown for fix time
intervals of one hour, 30 minutes, 15 minutes, 5 minutes, and one
ninute.

From the curves it can be seen that the shorter the time spacing
between each navigation fix, the lower the uncertainties in both
position and velocity. For a time spacing between each fix of one
minute, the maximum uncertainty in position is only 0.430 miles
as compared to 12.34 miles for a one hour time spacing. Only the
curves for time intervals of one and five minutes fall below a final
valze of one mile. 1In general the velocity uncertainty curves follow
the same pattern as the position curves, aithough their maximum values
do not. The maximum velocity uncertainty of 16.126 mph occurs on
the curve for a fix spacing of 15 minutes and the smallest maximum of
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Table III

The Zffect of Fix Spacing on the Uncertainty in Position and Velocity

Note: This data is taken from the same computer results used to
plot Fig. 3.

A te Position Uncertainty (mi.) Velocity Uncertainty (mph)
{Hours) Maximum Mid. | Final Maximum Mid. | Final
12.337 (3.0)2| 3.709 { 1.295 9.892 (1.0)% | .1946 | .0260
b 11.392 (2.0)% | 2.686 | .932 || 9.829 (1.0)* | .1411 | .o189
5.693 (4.3)a 1.916 .665 |116.126 (.25)a .1008 | .0135
1/12 1.681 (.17)% | 0.864 | .366 ||12.527 (.17)® | .0454 | .0075
1/60 0.430 (4.4)% 0.203 | .054 ||11.363 (.02)* | .o0109 | .0014

The Effect of Sextant Error on the Uncertainty in Position and Velocity

a See Table I

Table IV

Note: This data is taken rirom the same computer results used to
plot Fig. 4.

Sextant |Position Uncertainty (mi.) Velocity Uncertainty {(mph)
Brroré Maximum Mid. Final || Maximum Mid. | Final
d'naz 9.304 (2.8)% | 2.032 |.678 16.430 (.25)2|.1067 | .0137
G‘nbz 6.873 (2.8)% | 1.437 |.480 16.272 (.25)2|.0755 | .0087
O g’ | 5.693 (4.3)2 |1.916 |.665 16.126 (.25)%|.1008 | .0135
d ng® | 4.050 (4.0)® [1.355 |.470 16.095 (.25)%|.0713 | .0096

a2 See Table I

b O’naz is defined by Eq. D-2 in Appendix D, o'nbz =5;,(1'na2

cfncz =‘O.00005)2 rad., cfndz‘-"«s d ng

28
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9.829 mph occurs on the curve for a spacing of 30 minutes. All
final velocity uncertainties are below 0.025 mph ex-ept for the

curve for a one hour fix spacing.

Effect of Sextant Errors

The effect of using different values for the variance in the
errors of the optical measuring device on uncertainty in position
and velocity is shown in Fig. 4 and Table IV using Fix 1. The time
interval between each fix is held constant at 15 minutes and the
reference trajectory plane is inclined to the lunar plane at 90°.
Four different values for the variance are considered (Table IV,
Note b).

As expected, the maximum uncertainty in position of 9.304

. 2 .
miles occurs on the curve related to d n as this curve accounts

a ?
for the larger uncertainty in defining the horizon when the vehicle
is near the earth or moon. The maximum position uncertainty for the
constant variance d’ncz is 5.693 miles. After about 25 hours of
flight, the curves corresponding to d'na2 and G'ncz are almost
identicel as are the curves for d’nb2 and d'ncz. All position
uncertainties at arrival are less than cne mile and the velocity
uncertainty curves follow a pattern similar to the position curves.
The maximum velocity uncertainty occurs on the curve for J “a2 at

.. . 2
16.430 mph and the minimum is on the curve for d’nd at a value of

16.095 mph. All final velocity uncertainties are less than 0.025 mph.
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Comparison of Fix 1 and Fix 2

Fig. 5 and Table V show a coplanar comparison between Fix 1
and Fix 2. Fix 2, with a time spacing between each measurement
held constant at 15 minutes, is considered the standard. Each fix
uses a'na2 as the variance in the erxors of the optical measuring
device. Fix 1 is plotted for constant fix spacings of one minute
and 30 seconds respectively. The former curve has a maximum position
uncertainty of 14.634 miles and the latter 10.095 miles as compared
to 7.011 miles for Fix 2. Both position uncertainty curves for Fix
1 drop below the curve for Fix 2 before 40 hours of flight and all
final position uncertainties are less than one mile. Fix 1, with a
time spacing between each fix of 1 minute, has a maximum velocity
uncertainty of 12.878 mph and the same Fix, with a time spacing
between each fix of 350 seconds, has a maximum velocity uncertainty of
12.614 mph as compared to 14.953 mph for Fix 2. Both velocity
uncertainty curves for Fix 1 exhibit a plateau region between times of
flight of approximately 3 to 15 hours which are probably the result
of the non-optimum nature of the earth-moon angular measurements during
the early part of the flight. All final velocity uncertainties
are less than 0.025 mph.

Fig. 6 and Table VI show a non-coplanar comparison between
Fix 1 and Fix 2. The inclination angle is 90° and the same variance
in the errors of the optical measuring device is assumed as used
above. The time spacing for Fix 2 is again 15 minutes and Fix 1 is
plotted for time spacings of five and one minutes. The maximum
position uncertainty for Fix 1, with a time spacing between measurements
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Table V .
Coplanar Comparison of Fix 1 ard Fix 2 (4= 0%}

Note: This data is taksn fram t.. same computer resulis ussa to
plot Fig. 5.

Nav., | Posi.ion U-certainty (mi) Velocity Uncertaiity {mph)
Fix T .
| Max {mum I Mid; Final Maximun ¥id [Final
1® |1g.638 (13.8)% [ 3.735| 0,620 |1 12,878 (0.18)* | 0.2038| 0.0159
1d 10,095 (11.9)2 | 2.640] 0o438 I 12.614 (0.i5)% | 0.1440| 0.0112
2% | 7,011 (3.75)%} 2.333| 0,798 |l 14.953 (C.25)% | 0.1260{ 0.0200
a Sne Table I cA%=5ﬁn
) Atf=1min d Atf:j)o ace
Teble VX

Non-coplarar Camparison of Fix 1 and Fix 2 (4= 900)

Note: This do "¢ is teken franm the same camputer rosilts used to
plot Fig. 6.

r*Nw. ' Fosition Uncecrtainty {mi) Velocity "mcertainty f{uph)

Fi:___ Maximum ' Mid | Final Mexigum | Mid Finsl
1 | 2,409 (7.08)2 | 1.1:48]0.392 | 12.655 (0.37)2! 0.0604| 0.0080
19 11,302 (003202 0.216{0.079 || 11.364 (0.02)%] 0.0116 0.001
2 | 1.507 (12.7)“{ 1.382|0.559 || 6.923 {0.25)°| 0,0693 o.omjl

a See Tahle I ¢ Atfz 15 min

b At =5 min a Atf: 1 min
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of five minutes, is 2.409 miles and the maximum for the same Fix,
with a time spacing of cne minute, is 1.302 miles as compared to
1.507 miles for Fix 2. All final position uncertainties are less
than one mile. The maximum velocity uucertainties for Fix 1 are
12,655 mph and 11.3638 nph as compared to 6.9226 wph for Fix 2.
The velocity uncertainty curve for Fix 1, with a time spacing of
five minutes, shows a plateau region early in the flight as was
found with the coplanar curves. All final velzcity uncertainties

are less than 0.025 mph.
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The requirement for estimating the position and velocity
accurately along an earth-moon freefall trajectory using only earth-
moon angular measurements and an on~board computer capable of
computing the recursive navigatioen equations has been met. As
showm in the preceding section, updating the navigation information
every minute or less for the coplanar reference trajectory and
every five minutes or less for the non~coplanar reference
trajectory will result in acceptable uncertainties in the estimate
of position and velecity.

with the use of non-coplanar reference trajectories, a tra -
off should be obtainable between the capability of the on-board
computer and the desired uncertainties in position and ve.iocity
measurz2ments. This study has shown that the use of only earth-
moon angular measurements with zn on-board recursive navigation

system is & feasible navigation technique for a lunar mission.
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V1. Recommendations

Various extensions to this study are suggested by Dr. Battin's
work as outlined in r..erences 2 and 3. However, the next logical
development of this study would be the estimation of velocity
correction along the flight path needed to reach the target point
(Ref 2:21-36). 1In this extended study, full use could be made of
the perturbation matrices, state transition matrices, and position
and velocity estimates generated for this study. The digital
programs used in this 3tudy can be obtaine® from Mr. Poole of the
A.S.D. Digital Computation Division {see Preface) under problen
number 64024 and task number O40A-77137. It is suggesied that any
new studies be based on the data for&te= 5 min. or less, inclination =

2 2
60° or 90°, and ¢ r° = (0.00005) .
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Appendix A

Lunaxr Reference Trajectory

The utilization of trajectory shapes which bring an exploring
vehicle {rom the earth to a point arbritrarily near the moon and,
which if allowed to continue, return the lunar vehicle to the
earth with such conditions that reentry and recovery are feasible,
might be attractive for both instrumented and manned flights.
Photographing the surface of the moon, determination of astronomical
conszants by cbservation of trajectory perturbation, and checkout
of hardware are examples of unmanned lunar missions. The first
manned exploration flights may be “free-return" circumlunar flights
with no plan to land on the moon. If the manned mission is to
land on the moon, a '"free-return'" trajectory may be used so that
if difficulties arise which would make the lunar landing undesirable
the astronauts will return safely to the earth {Ref 14:1-2).

Because this is a feasibility study and to simplify the
reference trajectory calculations, several simplifying assumptions
relating to the mathematical model of the earth-mooun system have
been made.

(1) “he earth and moon are homogenous spheres and are
considered point masses.
{(2) The earth is located at the center of its sphere of

influence and when the lunar vehicle is traveling inside this sphere,

its ""frec-return" trajectory is effected only by the gravitational

Le
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field of the earth. Thus during this portion of flight, the
path of the spacecraft describes a conic with the earth at one
focus which will be elliptic, parabolic, or hyperbolic depending
on the insertion parameters. An analogous situation exists after
the spaceship enters the sphere of influence of the moon with the
exception that the path of the vehicle will always be hyperbolic.
The approximate radius of the sphere of influence of the moon has
been calculated to be 35,781 miles (Ref 10:29).

{3) The reference trajectory is high enough above the
earth that the effects of the atmospheric drag may be neglected.

(4} The moon revolves about the c2nter of the earth in
the lunar plane with a circular orbit of 238,857 statute miles
(one lunar unit) and at an angular rate of 0.22997084 rad/day
(Ref 10:29).

. (5) The effects of the sun, planets, meteroids, and

other perturbing bodies are neglected.

(6) The effect of the pressure of solar radiation is
neglected.

The effects of the neglected factors on the lunar reference
trajectory are discussed in the literature and are not presented
in this paper (Ref 4:61-74; Ref 11:10-11; Ref 13). Deviations
resulting from the introduction of the neglected factors can, for
the most part, be compensated for by changes in the injection
velocity (Ref 7: 3-5).

The reference trajectory can be calculated from a knowledge

of the insertion parameters. 7o increase the operational flexibility

41
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of the mission, launch with a non-zero flight path angle {(the
flight path angle is defined as the angle between the iocal
horizontal and the velocity vector) from a parking orbit will
be considered. The variable insertion conditions are the radius of
the parking orbit, flight-path angle, magnitude of the insertion
velocity, and the lunar lead angle. For a 4100 mile parking orbit
radius, insertion velocities below the parabolic escape velocity of
36,063 ft/sec will result in elliptical outgoing trajectories. The
insertion parameters selected for this study (Table A-1) will result
in a coplanar circumlunar mission that will bring the vehicle to
within 1000 miles of the surface of the moon and return the spaceship
to within 40 miles of the surface of the earth (Ref 8:23). Only the
outgoing elliptical portion of the reference trajectory from launch
to the moon's sphere of influence is used in this study (Fig A-1)
as this portion represents a large percent of the total distance
traveled on a lunar mission. The equations for calculation of the
elliptical parameters are listed in Reference 10: Appendix B.
Additional mission flexibility can be obtained if non-coplanar
reference trajectories are also considered. The lunar plane (x, y)
is inclined to the reference trajectory plane (a,b) at various
inclination angles to obtain the effect of using non-coplanar
reference trajectories. This method of inclining the two planes
eliminates the necessity to recompute the state transition matrices.

Transfovmation from the lunar coordinates (x,y.0) to the inertiul

h2
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Table /.1

Trajectory Insertion Parsmsters

Insertion Symbol Yalue Remnrks

Paramster

Fadius of

Parking Orbit £y 4100 miles Tos radius of the
intermediate or
lauvnch cruvit as
measured from the
center of the earth

Flight-path IL 40 degrees  Angle between the

angloe local horizon and
the velosity vector

Yelocity h 8 35,900 Value chosen is

f£¢/sec 163 £4/s0c less

than parabolic
ascape velocity

Iluanar lead 57 degrees Angle between the

angle T radius vectors from

the centex of the
earth to the moon
and to the launsch
point at time of

launach,
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coordinates (a,b,c), is given by (The inertial ccordinate system is

definea in &Appendix C.)

-
M

o

1}
&
¥

g ey
[+]
e
#
©

vhare
1 0 0
M = 0 cosi. -8ini
LP sini cosl |

and i £s the inclination angle between ths lunar plane and the

referense trajectory plans.
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Appendix B

Navigational Measurements

The best choice of celestial measurenents made at any instant
of time along a space trajectory depends on the position of the
spacecraft within tlie geometry of the Space System. In this study
a variety of measurements made on different sets of celestial
okjects in an Eaxth-Moon System is possible. The preoblem is to
define the possible measurements at each instant of time and
determine which measurement yields the hest estimate in position
as defined by Eq (34) in Sectiun IIX.

It is assumed in this aralysis that the spacecraft clock is
perfect. This assumption is consistent with the accuracy of present

day spacecraft zlocks oun comparatively short space trajectories, such

as the 50 hour lunar trajectory ccnsidered in this study. 1In
addition, the time interve.l required to make a single celestial
measurement{ can be aneglected, since the measuring device can be
programmed to szarch out and hold the seclected celestial objects
prior to the time of measurement. The rclatiouship between peosition
error and measuremeni error is essentially linear over a relatively
wide range., Therefore, a linear perturbation theory can be used for
detailed studies of any of the methods discussed in this appendix

{Ref 3:12).

TR

It was stated in Section II that each measurement establishes

~ <onmponent of spacecrafr position alorng some direction in space.

If ¢ is the quantity to be measured and ngis the difference between

b6
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the true and the reference walues, then it car be shown that the

deviation in spacecraft positisn 3 I is

Sa=n 35 (B-1)

regardless of the type of measurement (Ref 3:223-225). Thus, the
h vector alone will characterize the type of measurement.

In the interest of computing simplicity, the celestial objects
used in this study were the earth, moon, and six (6) starxs arbitraxily
located at an infinite distance along the coordinate axes of the space

coordinate systemn.

Earth-Moon Measurement

It can be shown {Ref 3:223-225) that for the earth~moon measure-

ment
r1 -(n1.n,)R, By - (m1.n5)0y
n = 2/=2 | 2z (B-2)
r sim A Z sin A

where ny and np are the unit vectors from & point on the reference
trajectory to the earth and moon centers respectively, r and Z are
the distances from the refereunce point to the earth anu moon centers
respectively, and A is the angle from the earth line to the moon

line.

Planet-Star Measurement

This 1s simply a speci~. case of the earth-moon measurement.
Eq B-2 can be modified to express the geometry vector of the earth-

star measurement as follows:

47
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. By =&y « By) By
B = R (-3)

where b, is the unit vector from a point on the refsrence trajectory
%o the star and Ap is the angle from ths earth line to the star
line.

Likewliase, a similar relationsnip can bs formulated for a

mon-star measureament.

By ~{bp « 2,) Bo
Z pin AM

where, Ay is the angle from the moon line to the gter line.

(B-4)

it

Apparent Dismeter of a Planct Msesurenant

The geometry wector for the aprarent diameter ¢f a planet

(Ref 3:223~-229) can be computed by

2 dp_gP
x(4} x* - dp?) Y2

b= (B-5)
where d is the actual diameter of the plc st (dg = s1.7812720° £t.
end 4, = li.hQS?BXlOe £4), x is the distance from tae point on the
reference trajectory %o the planet center (r for the earth and 2

for the moom), and__gp is the unit vector from refersnce polint to

tha planst ceuter (n; for the earth and go for the moon),




GCGC/BE/64-9
Appendix C

The Fundamental Perturbation Matrices

The procedure used to generate the perturbatio. matrices
discussed in Section II is developed in outline form in Reference
l: pgs. 761-773. Since the perturbation matrices in this study
were developed for the elliptical spacecraft reference trajectory
and lunar orbit in the same plane, simplifications to the equation
given in the cited reference were made. These simplifications are
based on the fact that in this coplanar case,

N= -w (C-1)
and i =0 (C-2)
As shown in Fig C-1, (L is the true anomaly of the spacecraft
reference trajectory at the time of launch and i is the inclination
of the spacecraft reference trajectory and lunar orbit planes
measured at the ascending node (AN). The parameter w is defined
for the coordinate systems used in the cited reference and has no
meaning in the coordinate system of Fig. 1C. It is only stated here

as a key to the simplication process.

Computation of R(t) and V(t) Matrices

The equations used to compute the R{t) and V(t) matrices
of this study are lised here for reference. The parameters used
in these eguations are defined in Table C-I. The R(t) and V(t)

matrices were written ir the fornr

R'(t) MppT

Vl(t) Mppr

R(t)
(C-3)

1]

v(t)
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Reference \\

Trajectory J\
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]

Moon canter of mass at launch
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Ascending node for gsnsral non-coplanar case
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Table C-1

Reference Trajectory Paranmeters

Parameter(s) Definition(1)

te time of flight = t - tL
t time measured from perigee
tL time of launch measured from perigee {(0.0065147892 days)
(L) position of spacecraft at time t; (see Fig C-1)
b position of spacecraft at time t (see Fig C-1)
v velocity of spacecraft at time t
a semi-major axis (0.95190686 lunar units(z))
P semi-latus rectum (0.01996412% lunax units(z})
e eccentricity (0.98945804)
E eccentric anomaly at time ty (0.12312378 rad.)

L true anomaly at time . {1.4052372 rad)

A gravitational parameter (0.05386804 l.u.a/dayz)

Note (1) The values listed are computed from eguations

obtained from Ref 1.

(2) 1 1unar unit = 238,857 miles

51




GGC/EE/ 64~9

where
- -
‘ra(L) r{L) 0
xr(L) r{L)
T (C-4)
Mpp™ =
"rb(L} ra(L) e}
(L) (L)
O O 1l
and - N
Ryz R2y 0
R'(t) =
Ry2 Rpp o
o 0 Rz |
(C-5)
11 Va1 0
!
0 (0] v
) 33

The elements of the R’(t) and V'(t) watrices are as follows:

Ryp = 2 mpll) se |y .3 s
(«pi% r(L) a3 valf |- P
(C-6)
va r(L)? - P(P-x(L)) + (up)isr, (L)x,
9«a)§ sin o2 /e x{L)
) .
- 2 2
Ryp = i/&p)% 2ae [ra ~3va tel -~ | xp” * plla - (L) _
e r(L) 4 2 = P

52
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va

(maj’s sin E

rp(L) xp (P + x(Lj)

l>2ax:(l.)‘2 - P(p-x(Lj}) {a -
L 2 |

rarb
T

|
),

(up)% e (L)
f
Rip = & rb(L) 3
s (L) | 2% |z Ve th B
v, 2 P(p-x(L))
(ua)’ sin E 2eily - 2 J
= %
R,y = P
22 ,bLeV:(I).) 2ae [-b - %Vb th - [
vb ar(L)2 - P(p-x(L)) a - r(L)z
y&a)g sin $ e ( P

r,r L) (p + x{L))
e (up)k (L)

~
!

_ arb(L) 3 Ta o
T omEEm )R
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33 ¥ Pup)-% [-ra(L)rb - Ia Ib(L)J

va
5’] TRAP-mp Y o+

r‘L}z):l -
(C-7)
(c-8)
_ wp) g (L)x,
« e r(L)

L

a -

?:(L)2 -
P

r

’ J

)

(c-9)

(C-10)

b o

(c-11)
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r

AUxa ‘2:(1.)2 _P(p - =(L)) [V + g,»';n)!'f raiL)vp
r (ua)xs sin E L e? A er(L)

P
- Xa
Va'aP = Tb%o | 2ax(L)2 -
2 r e r3(/4a)*5 sin E

!
Eé (p - x(L)) (a - (L 2)}}- rp(L)vb (p + x(L))  (C-12)
P

% 2
(D) 3 a te - va-l + Ja - x(L)
Vpp = aer(L) 2ae [2/“ =t

(up)¥erx (L)

v = arn. (L 3 r
12 b{&) ) 2e [5 ;—% te - Y.b.] + VaVpP + ravi +
r

2 re
(C-13)
‘b 2r(L)2 - P(p-x(L)|}.
r (ma)% sin E [r( ) *—L‘E—zﬂ'—{l %({ilz’:gb)"a
= % 3,%p b -v6 |+ |2 - x(1)?
[Varbp-r Iy Vb |+ xrb i
| xé by er3 (/La)g sin E
l; L)% - p . \2
L“( TR E (e - 1) (& - 2Bl r(yva(p * x(L)
¢ P e («p)% £(L)
(C-14
5 T
V33 = (/'t'!“}- l-ra{L)vb - vy rb(L)] (C-15)
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Computation of R*(t) and V*(t) Matrices
The R*($) and V*(t) matrices are computed using the same equations
derived for R(t) and V(%) if t; is replaced by t, (time of arrival) and

r(L) is replaced by r{A) (pcsition at t,).




GGC/EE/64-9

Appendix D

Assumed System Erxors

This appendix contains the assumed r.m.s. inj«ction errors,

the initial correlation matrix {E ) based on these errors,
and the assumed variance of our optical measuring device

(Ref 2:28-29).

Initial Correlation Matrxix (Eg)
The correlation matrix of the injection errors is based on

the assumed r.m.s. injection errxors contained in Table D-I .

Table D-1

Assumed R.M.S. Injection Errors

Altitude Yrack Range
Position 10,000 £t 15.000 £t 5,000 ft
Velocity 15 ft/sec 6 ft/sec 4 ft/sgec

The correlation matrix belnw was obtained by a transforumation
from the altitude, track, and range coordinate system aof Table
D-I to the (a,b,c) coordinate sysvem defined in Fig. C-1. The
basic units of the Ep matrix as shewn in ¥g, D-1 are lunar units

X 10710 and 1lunar units per day X 1677 .

3%
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1.087 -1.019 ~0.413 0 0 0
-1.019 04957 0.388 0 0 0
-0.413 0.388 0.157 0 G 0
Ey = 0 0 0 0.557 =24553 -0.647
0 0 0 -2,553 11.692 2.963
] 0 ] 0 -0.647 2.963 0.751

(D-1)
The initiel uncertainties in position and velocity are 3,543 miles and

11.374 miles per hour.

Yarisnce(d n°) of the Optical Ssxtept

The standard deviation of the optical measuring device (sextant) was
assumed to be approximately 0.05 milliradians (10 seconds of arc). However,
since all the angular measurements in this study are made relatively close
to the earih and moon, an additional factor was introduced in some of the
computer runs %~ accomodate the decrease in accuracy as the spacecraft
gets close t¢ a planet. Based on these considerations the ssxtant when
measuring the angle betwesn the earth and moon was assumed to have a
random srcor whose variance

’, > 1 2
(8.00005)° + (r{%,)) red, if r(t,)< B(t,)

G nt= (D-2)

(0.00005)° + (Z%;n))z red, if r(t,)> &(t,)
where r(t,) and Z(%,) are the distances in miles from the spacecraft to
the sarth and moon, reapectively. For measuremsnts involving cnly one

plar .&, the appropriate varience was used; for example, the measurement
of the augle bstweer the earth and & star would use only the first part

of Eq. D-2,
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